
A Software Architecture Based on Coarse-Grained
Self-Adjusting Computations

Stefan Wehr
stefan.wehr@hs-offenburg.de

University of Applied Sciences, Offenburg, Germany

Abstract
Ensuring that software applications present their users the
most recent version of data is not trivial. Self-adjusting com-
putations are a technique for automatically and efficiently
recomputing output data whenever some input changes.

This article describes the software architecture of a large,
commercial software system built around a framework for
coarse-grained self-adjusting computations in Haskell. It
discusses advantages and disadvantages based on longtime
experience. The article also presents a demo of the system
and explains the API of the framework.

CCS Concepts: • Software and its engineering→ Func-
tional languages.

Keywords: software architecture, self-adjusting computa-
tions, functional reactive programming, push, pull, Haskell

ACM Reference Format:
StefanWehr. 2023. A SoftwareArchitecture Based onCoarse-Grained
Self-Adjusting Computations. In Proceedings of the 1st ACM SIG-
PLAN International Workshop on Functional Software Architecture
(FUNARCH ’23), September 8, 2023, Seattle, WA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3609025.3609481

1 Introduction
Many software applications need to present their users the
most recent version of data available. Further, data updates
should propagate in a timely manner. Ensuring these two
properties is not trivial, especially if input data is collected
and aggregated from multiple sources that change over time.

There are two main approaches to deal with this challenge.
With the pull approach, new versions of outputs are explic-
itly requested, e.g. by hitting a reload button or through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FUNARCH ’23, September 8, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0297-6/23/09. . . $15.00
https://doi.org/10.1145/3609025.3609481

client-side polling. In contrast, the push approach shifts re-
sponsibility to the input data sources and the processing
pipeline. Each time a source emits new data, the change
must be propagated to the outputs.

The pull approach is rather straightforward to implement.
For each request, the software queries the data sources for
inputs and computes the outputs. By construction, the out-
put is up-to-date with respect to the inputs at request time.
But if the request time is too far in the past, users may expe-
rience latency. Another downside is that requests are often
performed redundantly for the same inputs.
The push approach avoids latency and such redundant

computations because it recomputes outputs automatically
on change of relevant inputs. Further, applications might
benefit from precomputed outputs, e.g. to synchronize mo-
bile devices for offline use. However, it is not trivial to ensure
that outputs are up-to-date. On change of some input, all
outputs depending on it must be recomputed (correctness),
but other outputs should not (efficiency). Hence, develop-
ers need to track dependencies between inputs and outputs,
either manually or, better, by relying on some framework.

This article describes a software architecture based on the
push approach. Central to the architecture is a framework
for coarse-grained self-adjusting computations [1, 20]. These
computations ensure that any change to some input is prop-
agated through the processing pipeline, ultimately keeping
all outputs up-to-date. A dynamic dependence graph and
memoization enables the framework to reevaluate only those
parts of the pipeline that really depend on the changed input.
Currently, the dependence graph is not persisted, it must be
rebuilt after each start. This might delay application startup.

The framework provides abstractions for data sources and
sinks to integrate external systems. These systems may use
push, pull, or other approaches.

Contributions and Roadmap.

• We describe the architecture of a large, commercial soft-
ware system built around a Haskell framework for coarse-
grained self-adjusting computations (§ 3).

• We explain the API of the framework, which we often just
call the computation framework (§ 4).

• We present a simplified demo of the original software (§ 5).
• We discuss advantages and disadvantages based on long-
time experience implementing, extending, operating and
maintaining the system (§ 6).

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3609025.3609481
https://doi.org/10.1145/3609025.3609481

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Stefan Wehr

We start in § 2 with background information, § 7 discusses
related work, and § 8 summarizes. The source code of the
demo and the computation framework is available open-
source [23].We extracted the code from the original software,
some parts have been written from scratch.

2 Background
The architecture and implementation described in this article
is part of a large commercial software framework developed
by medilyse GmbH (Freiburg, Germany). The author of this
article worked 2010–2020 for this company. During that time,
he was heavily involved in the architecture, the design, and
the implementation of the whole system. Starting in 2010,
medilyse had three employees, in 2023 there are about 15.
The software developed by medilyse, called computation

framework, provides the technical foundation of C, a health
information system used in several of the largest hospitals in
Germany.1 Main users of the system are doctors, nurses, and
patients. They access C either through a web-browser or a
mobile device. The mobile app supports offline operation to
compensate bad WLAN coverage in some hospitals.

C offers a range of diverse features. (1) It provides doc-
tors and nurses read-only access to the electronic health
record (EHR) of a patient. (2) It gives doctors and nurses
write-access to some data fields of the EHR. (3) It enables col-
laboration among doctors and nurses. (4) It allows patients
to communicate with the hospital.
Feature (1) involves acquisition and aggregation of data

from various sources provided by the hospital IT. This data
includes personal information of patients, diagnoses, medi-
cations, treatment plans, radiology images, laboratory tests,
surgery reports, and more. Features (2) – (4) are interactive
features, subsumed under the name workflow.
This article mainly concentrates on the architecture sup-

porting data processing for feature (1). Hospitals in Germany
usually do not offer a central place for all information of the
EHR. Instead, data is scattered over different systems, and
each system has its own way of querying and retrieving data.
Here are some of the main data sources:
• HL7 version 2 [13] communicates admissions, discharges,
and transfers of patients, as well as various kinds of reports
and test data. Nearly every hospital has its own in-house
standard for the semantics of HL7 messages.

• DICOM [7] is a standard to transmit, store, and retrieve
medical images and their meta data.

• There are various other systems (often hospital-specific)
for accessing information such as archive data, surgery
schedules, results of microbiological tests, and more.
To conclude this background section, here are approximate

numbers for a large installation of C. The system processes
140,000 HL7 messages per day, the working set requires
1For legal reasons, we do not use the real name of the system and omit
several brand, company, and hospital names.

1.6 TB of disk space and consists of 10,000 patients, 230,000
reports, 6.5 millions dicom images, and 500 users. C is im-
plemented in a variety of programming languages: Haskell
(375,000 lines of code), Typescript (330,000), Objective-C
(150,000), and Dart (70,000).

3 System Architecture
Fig. 1 shows the architecture of C with a focus on how data
flows through the system. The hospital part on the left is ex-
ternal to the system and depicts the other software systems of
the hospital’s IT infrastructure. Self-adjusting computations,
shown as bold arrows in red, drive the processing pipeline.
These computations automatically recompute outputs on
change of some input, caching intermediate results. Rounded
rectangles are software components, cylinders event stores,
and dashed arrows represent data flowing in a specific direc-
tion. The processing pipeline has four main steps.

3.1 Import
The first step imports data from IT systems of the hospital.
It features several import components, depicted as rounded
rectangles in green, to integrate event-driven (push) and
query-based (pull) hospital systems into the push-based
pipeline of C. Two examples will clarify this idea.

HL7 is event-based. The HL7 server is configured in the
hospital’s communication server to receive HL7 messages
for all state changes such as patient admission, discharge,
transfer or the creation/update of a medical report. On re-
ception of a message, the HL7 server saves the message and
pushes a notification to the computation pipeline. In contrast,
DICOM is query based. Hence, the DICOM import queries
the hospital’s DICOM server for new radiology images in
regular intervals. On arrival of new images, it saves them to
disk and pushes a notification to the computation pipeline.

3.2 Interpretation
Each hospital has its own conventions and standards. It is the
responsibility of the interpretation to transform data coming
from hospital IT systems into a data format common to all
installations of C. Self-adjusting computations drive this
transformations. They read input from import components
(and thus ultimately from the hospital) and produce data in
C’s domain model of the hospital.
For example, a lab value for C-reactive protein (CRP, an

inflammation indicator) might be encoded in HL7 like this:

OBX|2|NM|CRP ^^^103440|9989|0.9| mg/dL|< 0.5|H|||F|

Here is the representation in the domainmodel (JSON-format):

{"name": "CRP", "displayRange": "< 0.5",
"displayUnit": "mg/dL", "displayValue": "0,9",
"rangeMax": 0.5, "value": 0.9, "flag": "too -high"}

The interpretation persists its output (the domain model)
in a component called file store (left cylinder filled with blue,

A Software Architecture Based on Coarse-Grained Self-Adjusting Computations FUNARCH ’23, September 8, 2023, Seattle, WA, USA

(2) Interpretation

self-adjusting

HL7
server

DICOM
import

Other
imports

computations

communication
server

DICOM
server

Other data
sources

file store

workflow
store

configuration

Sync
server

HTTP
server

mobile
devices

web
browsers

(1) ImportHospital (4) Synchronization(3) UI generation /
 Workflow / Export

Export
manager

domain model UI model

configuration

file store

self-adjusting
computations

Figure 1. Architecture of C with a focus on data flow.

Fig. 1). The file store is a custom-made document store sup-
porting multiple versions per document, garbage collection
for unreachable documents, and an eventlog announcing
changes to the documents. Essentially, it is an event store [18]
that deletes unreachable data after a certain time. Deletion
needs to be performed for reasons of data privacy and to
keep disk usage manageable, as the working set without
historic data already requires up to 1.6 TB on disk.
The processing pipeline uses another instance of the file

store in the next step (right cylinder filled with blue). For
historic reasons, the two instances of the file store do not
share the same code. As they are very similar in interface
and semantics, we ignore the differences for this article.

3.3 UI generation / Workflow / Export
The main duty of the third step is to generate a high-level UI
representation that can be rendered by mobile devices and
web browsers. Again, self-adjusting computations drive the
translation from data in the hospital domainmodel (left file
store) to the UI model (right file store). The CRP example
from step (2) might be represented in the UI model like this:
{ "key": "CRP", "keyDetails": ["< 0.5"],

"value": { "text": "0,9", "color": "red" },
"valueDetails": ["mg/dL"] }

The rendering could look like this: CRP
< 5 mg/dL

0,9

UI generation is heavily customized by configuration files.
The configuration defines what views should be generated,
how these views should look (ordering, colors), and more.
Different user groups might have different view configura-
tions. However, there is no more hospital-specific code.
The third step has two more responsibilities. Although

they are important for the overall system, we only cover
them briefly because they are not central to this article.
Workflow is the umbrella term for any user input and in-

teractivity. Examples are: user marks a task as completed or
user saves a questionnaire. The system encodes such interac-
tions as workflow actions. Techniques from operational trans-
form [10] enable actions to be executed concurrently, even

when offline. The workflow engine tries to solve arising con-
flicts automatically. If this fails, it requires user intervention.
An event store (workflow store, unfilled cylinder) persists
the actions and makes them available to the computations.
Export transfers certain data back to the hospital. For ex-

ample, a completed questionnaire might be stored as a PDF
in the database of the export manager. The export manager
then exports the PDF to the hospital.

3.4 Synchronization
The last step is synchronization. For mobile devices, which
support offlinemode, the sync server uses the UImodel from
the file store to compute the set of documents reachable for
a certain user. Further, it tracks the set of documents stored
on each device. On connection of a user, it synchronizes the
missing documents to the device. For users connecting via
web browsers, no synchronization is performed. Instead, a
HTTP server sends the documents when needed.

4 API for Computations
The architecture described in the preceding section is mainly
realized in Haskell [12]. Especially, the framework for coarse-
grained self-adjusting computations (often simply called
computations) has been implemented in this language. Fig. 2
lists the essential functions provided by the API of the frame-
work. The API has four major entities:

Computation definitions specify the implementations of
computations. Type: CompDef p r, where p is the parameter
and r the result type of the computation.

Computation values represent computations at runtime.
These values result from wiring computation definitions
with previously defined computation values. Type: Comp p r.

Caching strategies determine if/how computation results
are cached. Type: CompCacheBehavior r.

Data sources and sinks abstract over inputs and outputs.
Type classes: CompSrc and CompSink.

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Stefan Wehr

-- Accessing data sources and sinks
compSrcReq :: CompSrc s => TypedCompSrcId s -> CompSrcReq s a -> CompM a
compSinkReq :: CompSink s => TypedCompSinkId s -> CompSinkReq s a -> CompM a

-- Defining computations
defineComp :: (IsCompParam p, IsCompResult r)

=> String -> CompCacheBehavior r -> (p -> CompM r) -> CompDef p r
defineIncComp :: (IsCompParam p, IsCompResult r, LargeHashable r)

=> String -> r -> (p -> r -> CompM r) -> CompDef p r

-- Calling computation values
evalComp :: (IsCompParam p, IsCompResult r) => Comp p r -> p -> CompM (Maybe r)
evalCompOrFail :: (IsCompParam p, IsCompResult r) => Comp p r -> p -> CompM r

-- Wiring computation definitions
wireComp :: (IsCompParam p, IsCompResult r) => CompDef p r -> CompWireM (Comp p r)
wireRecComp :: (IsCompResult r, IsCompParam p) => (Comp p r -> CompDef p r) -> CompWireM (Comp p r)
compDriver :: (IsCompParam p, IsCompResult r)

=> (CompFlowRegistry -> IO () -> IO ()) -> CompWireM (Comp p r) -> p -> IO ()

-- Caching computation result
fullCaching :: (LargeHashable r, Show r) => CompCacheBehavior r
hashCaching :: (LargeHashable r, Show r) => CompCacheBehavior r

-- Constraints
type IsCompParam p = (Show p, Typeable p, LargeHashable p) type IsCompResult r = (Show r, Typeable r)

Figure 2. API for self-adjusting computations

Two other types are also important: CompM is the monad for
implementing computations, and CompWireM is the monad
for wiring computation definitions and values.

4.1 Accessing Data Sources and Sinks
Function compSrcReq takes the identifier of a data source
and a request, and returns input according to the request.
This function lives in the CompM monad because it is used to
implement computations. The handling of outputs is similar:
compSinkReq takes the identifier of some sink and a request,
where the request contains the output to be produced. The
return value of compSinkReq contains information about the
completed request (e.g. a document store returns the version
of the newly stored document). Users of the framework may
provide their own data sources and sinks; see App. A.

4.2 Defining Computations
Function defineComp creates a computation definition. It
takes a unique name for the computation, a caching strategy
for the result, and the body of type p -> CompM r.

Example
Consider a computation returning the number of lines in
some file.

numberOfLinesCompDef :: CompDef FilePath Int
numberOfLinesCompDef =
defineComp "numberOfLines" fullCaching $ \p -> do
string <- compSrcReq fileSrc (ReadTextFile p)
pure (length (lines string))

Here, we assume a data source for reading files with identifier
fileSrc and request ReadTextFile. The request returns the
content of the file as a string. We discuss the caching strategy

fullCaching at the end of this section. The computation is
reevaluated if the file at path p changes on disk.

End example

Function defineIncComp is a more general version of
defineComp. It defines an explicitly incremental computa-
tion that folds over the history of computation results. Hence,
there is also an initial value r and the body of the computa-
tion gets access to the previous result.

4.3 Calling Computation Values
The body of a computation definition may call a computation
value supplying some argument, see evalComp. The result is
Nothing if the call fails; evalCompOrFail propagates failure
to the caller.

Example
The following computation definition takes a computation
value c, applies it to all filenames read from another file, and
finally sums the results.

sumCompDef :: Comp FilePath Int
-> CompDef FilePath Int

sumCompDef c =
defineComp "sum" fullCaching $ \p -> do
string <- compSrcReq fileSrc (ReadTextFile p)
list <- mapM (evalCompOrFail c) (lines string)
pure (sum list)

The computation is reevaluated if either the file at path p
changes on disk, or any of the evalCompOrFail calls return
a different result.

End example

A Software Architecture Based on Coarse-Grained Self-Adjusting Computations FUNARCH ’23, September 8, 2023, Seattle, WA, USA

4.4 Tracking Dependencies
A call of evalComp, evalCompOrFail, or compSrcReq records
a dependency between the caller and the callee. More specifi-
cally, assume that we execute the body of some computation
definition 𝑐 applied to argument 𝑝 (written 𝑐 𝑝).
• If execution hits evalComp 𝑐′ 𝑝′, a dependency between 𝑐 𝑝
and 𝑐′ 𝑝′ is recorded (analogously for evalCompOrFail).

• If execution hits compSrcReq 𝑠 𝑞 for data source 𝑠 and re-
quest 𝑞, a dependency between 𝑐 𝑝 and (𝑠, 𝑞) is recorded.

The dependence graph is dynamic. At start of executing 𝑐 𝑝 ,
the old dependencies are deleted and freshly collected.

Whenever the result of 𝑐′ 𝑝′ or (𝑠, 𝑞) changes, application
𝑐 𝑝 is automatically reevaluated. If reevaluation produces
a different result than before, callers of 𝑐 𝑝 are reevaluated
and so on. However, if reevaluation of 𝑐 𝑝 produces the same
result, no changes need to be propagated.
The framework also tracks outputs being produced via

compSinkReqwhile running 𝑐 𝑝 . If computation 𝑐 is no longer
applied to 𝑝 , the outputs get deleted.

The framework identifies a computation application 𝑐 𝑝 by
the name specified in the definition of 𝑐 and by a hash-value
of 𝑝 . Hashing is performed via the type class LargeHashable,
see constraint IsCompParam. This class provides a method
largeHash for computing 128 or 256 bit cryptographic hashes.
We have largeHash(𝑥) == largeHash(𝑦) iff 𝑥 == 𝑦 with a
very high probability, so the framework may use largeHash
to identify values.

4.5 Wiring Computation Definitions
Before use, a computation definition has to be turned into a
computation value, see wireComp. Recursive computations
are possible via wireRecComp. Both functions run in the
CompWireM monad, which collects all computation values.

Function compDriver runs the collected computation val-
ues. The first parameter of this function is a callback taking
a CompFlowRegistry. Users of the framework register all
required data sources and sinks here.

Example
We complete the example by a computation that stores the
result of a computation application in file output.txt.
storeCompDef :: Comp FilePath Int -> CompDef () ()
storeCompDef c =
defineComp "store" fullCaching $ \() -> do
i <- evalCompOrFail c "file_list.txt"
compSinkReq fileSink (WriteTextFile "output.txt"

("lines: " ++ show i))

Here, fileSink is the identifier of a data sink for writing
files, WriteTextFile is a request of this sink. Next, we wire
all three computations.
wireAllComps :: CompWireM (Comp () ())
wireAllComps = do
numberOfLinesC <- wireComp numberOfLinesCompDef
sumC <- wireComp (sumCompDef numberOfLinesC)
wireComp (storeCompDef sumC)

self-adjustingImport
store computations

file store

workflow
store

configuration

HTTP
server

web
browsers

UI model

Figure 3. Architecture of the demo system

The main function (not shown) uses compDriver from Fig. 2
to run the computation value returned by wireAllComps.

End example

4.6 Caching Computation Results
The framework caches computation results. There are two
main strategies:

• fullCaching: The result of calling a computation value
is memoized. If the computation value is applied to the
same argument elsewhere and none of its dependencies
has changed, then the result is fetched from the cache.
Typically, this strategy is used if the computation value is
called multiple times with the same argument, if a call is
not cheap, and if the result does not consume too much
memory.

• hashCaching: The result of calling a computation value
is not saved, only its large hash. Hence, if the computa-
tion value is applied to the same argument, it has to be
reevaluated. Typically, this strategy is used when we need
a dependency blocker, but caching the whole result would
consume too much memory.
Assume a call 𝑐1 𝑝1 evaluates 𝑐2 𝑝2 which in turn evaluates
𝑐3 𝑝3. Using hashCaching allows the framework to block
the transitive dependency of 𝑐1 𝑝1 on 𝑐3 𝑝3, so 𝑐1 𝑝1 has
to be reevaluated only if 𝑐2 𝑝2 changes but not if only
𝑐3 𝑝3 does. This is beneficial if 𝑐3 𝑝3 changes much more
frequently than 𝑐2 𝑝2.

5 Computations in Action
This section makes the architecture and the API from § 3
and § 4 concrete. It gives a tiny, stripped-down demo of C.

Fig. 3 shows the architecture of the demo. The architecture
is close in spirit to that of C but we made several simplifica-
tions. Hospital data is not imported as HL7, but expected to
be stored as JSON in an event store (Import store). There is
no dedicated domain model. Instead, we use the schema of
the JSON data in the import store. Consequently, the “inter-
pretation” is missing. We dropped support for exports and
for mobile devices. Further, users cannot interact with the
system by creating workflow actions. Instead, data has to be
inserted manually as JSON into the workflow store.
Fig. 4 shows code from the demo, including some auxil-

iaries. The definition getCfgCompDef defines a computation

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Stefan Wehr

Computations
getCfgCompDef :: CompDef () Config
getCfgCompDef =
defineComp "getCfg" fullCaching $ \() -> do
bs <- compSrcReq fileSrc (ReadFile "demo.cfg")
parseCfg bs

activePatsCompDef :: CompDef () PatsAcc
activePatsCompDef =
defineIncComp "active" (Nothing ,HashMap.empty) f
where f :: () -> PatsAcc -> CompM PatsAcc

-- read more patients from eventlog
-- update PatMap accordingly

visiblePatsCompDef :: Comp () Config
-> Comp () PatsAcc -> CompDef () PatMap

visiblePatsCompDef cfgC activePatsC =
defineComp "visible" fullCaching $ \() -> do
cfg <- evalCompOrFail cfgC ()
(_, m) <- evalCompOrFail activePatsC ()
now <- compGetTime TimeInterval5min
pure (HashMap.filter (pred now cfg) m)

where pred :: UTCTime -> Config -> Pat -> Bool

wireComps :: CompWireM (Comp () ())
wireComps = do
cfgC <- wireComp getCfgCompDef
activePatsC <- wireComp activePatsCompDef
visiblePatsC <- wireComp $

visiblePatsCompDef cfgC activePatsC
...

Auxiliaries
type PatMap = HashMap PatId Pat
type PatsAcc = (Maybe PatMsgKey , PatMap)
compGetTime :: TimeIntervalType -> CompM UTCTime

fileSrc :: TypedCompSrcId FileSrc
ReadFile :: FilePath -> CompSrcReq FileSrc ByteString
parseCfg :: MonadFail m => ByteString -> m Config

Figure 4. Code from the demo

for reading the configuration from file demo.cfg. The com-
putation takes no parameter, as we hardcode the name of
the config file. The fullCaching strategy means that the
config file is only parsed on first invocation of the compu-
tation or if the file content changes. We read the file with
compSrcReq. Here, fileSrc is the identifier of a FileSrc, a
CompSrc instance for reading files. ReadFile is a request of
this source returning a ByteString.
The definition activePatsCompDef computes the active

patients from the import store. This store is an eventlog of
patient messages, where each message carries an increasing
key PatMsgKey and the data of a patient Pat. A patient has
a patient ID PatId, some personal data, the admission time,
and an optional discharge time. Newer messages update the
data of older messages for the same patient.
Hence, activePatsCompDef uses mkIncComDef to fold

over the messages from the store. The accumulator of type
PatsAcc carries the key of the last message read from the
store so far (optional, type Maybe PatMsgKey) and a map
of currently active patients (type PatMap). The function f,
whose body has been omitted, gets the previous PatsAcc
value, reads new messages from the store, and computes
the new accumulator. Note that activePatsCompDef can-
not read old messages again. Thus, its decision to add or
remove a patient from the active patients must be final for a
specific message, it must not depend on the configuration.
Consequently, activePatsCompDef over-approximates the
set of patients visible to the users.
The definition visiblePatsCompDef computes the actu-

ally visible patients. It gets the two previously defined com-
putations to access the configuration and the active patients.
It then retrieves the current time to filter out certain active
patients according to the configuration. Accessing the time

is handled by a builtin data source exposed via compGetTime.
This function takes a time interval (1min, 5min, . . .) specify-
ing the granularity of updates to the time.
The other computations of the demo do not introduce

any new concepts. We show the wiring of computations in
wireComps. This function ultimately returns the root com-
putation (not shown in the code). The order to construct the
computations via wireComp starts at the leaves of the static
call tree. This way, all computations required to define some
computations 𝑐 are already defined when defining 𝑐 . For
example, getCfgCompDef and activePatsCompDef take no
computation as parameters, so these are defined first. Then
we use the resulting computations for visiblePatsCompDef.
Consequently, mutually recursive computations are not sup-
ported (but recursive computations are possible)

Themain function of the demo (not shown) uses wireComps
to define the required computations. Before handing control
to the main loop of the computation framework, it also needs
to register all required data sources and sinks. Some standard
data sources and sinks are predefined, but defining custom
sources or sinks is possible, see App. A.

The demo is rather small, it consists of eight computations,
two sources, and one sink. The original software has 570
computations; 20 thereof use hashCaching, the remaining
ones use fullCaching. It contains 13 data sources and sinks.

6 Discussion
Development of the system presented in this article started
in 2010 and the product is still alive. The push-centered
architecture based on the framework for coarse-grained self-
adjusting computations was there from the beginning. We
extended the framework with several features over the years

A Software Architecture Based on Coarse-Grained Self-Adjusting Computations FUNARCH ’23, September 8, 2023, Seattle, WA, USA

(e.g. exports, demand-driven generation of outputs, client-
side scripting), so we can testify enough flexibility.
Clearly, developing a software product for hospitals also

involves aspects such as privacy, security, regulatory affairs,
and deployment. This article concentrates on the computa-
tion framework and deliberately ignores these points.

6.1 Advantages and Disadvantages
We had several motivations for devising a push-based ar-
chitecture. Firstly, bad WLAN coverage in 2010 required an
offline mode for the mobile application. (WLAN coverage
in German hospitals has improved since then but is still an
issue.) But support for offline operations requires to com-
pute all data upfront, so that data can be synchronized to
mobile devices. Secondly, we had seen lot of very slow soft-
ware systems in hospitals, presumably because of database
contention caused by repeated polling. As update rates in
hospitals are quite low (less than 5Hz, most of the time much
lower), we expected the push approach to solve this problem
as well. Thirdly, we wanted the system to scale with the
number of users, at least if there is a fixed number of view
configurations, so that the majority of users see the same
data. Overall, all three expectations were met.
But there are also disadvantages. The main problem is

long startup times. If the systems restarts (most of the time
due to a software update, very rarely because of a crash), it
can take up to two hours (!) to get everything operational
again. The problem here is that the state of the computation
framework is not persistent. Hence, the system regenerates
every output from scratch, just to notice the result on disk is
already up-to-date. During this time, users can still interact
with the system, they can view and input information, but
no new data flows through the pipeline. At one point, we
experimented with persisting the state of the framework.
However, our approach turned out to be too slow, so we did
not investigate further.
There are also scalability issues in certain directions. For

example, doubling the number of patients (i.e. inputs) poten-
tially visible to some users also doubles (at least) the time
required to process all changes. This holds even if nobody ac-
tually accesses the added patients. To mitigate this problem,
we introduced the concept of focus. For a certain group of
patients, data is only generated if a user clicks on the patient
in the UI. Hence, data for such patients is not available offline
before the first user tries to view it. Another scalability prob-
lem arises if many users have different view configurations.
In this case, the system needs to produce outputs for many
different view configurations.
To summarize the discussion on scalability: the push ap-

proach performswork for each input change and each output,
whereas the pull approach performs work for every client-
side request.

6.2 Haskell and Alternative Approaches
We used the functional programming language Haskell to
implement the computation framework. Haskell’s emphasis
on purity is important because computation bodies should
contain only side effects from the CompMmonad. Other side ef-
fects could lead to unwanted behavior as these effects would
be repeated whenever the computation is reevaluated. Fur-
ther, free monads are essential to temporarily suspend one
computation in order to evaluate another one.

Our implementation does not rely on laziness, though. In
fact, the whole project uses GHC’s StrictData flag, so the
fields of all data types are strict by default. Only very few
fields are explicitly lazy (and we could even avoid these).
Having strict data types makes space leaks much less likely.
It seems possible to implement the framework in some

other programming language. Using a more mainstream
language (Kotlin, Dart, . . .) would offer better support for
debugging and monitoring than Haskell. But we would miss
monads and a type system that controls side effects.
The software product discussed in this article uses a va-

riety of languages: Haskell for the backend, Typescript for
client-side scripting and the web, Objective-C for the legacy
iOS app, and Dart for the next-generation client app. This
mixture of languages introduces its own complexity and be-
comes more of a problem, especially as the size of the team
grows. (We started with three developers, now there are
eight). For example, a developer proficient in Typescript but
not in Haskell tends to solve problems in Typescript, even if
the right solution lies in the Haskell part of the application.
Also, Haskell’s learning curve is quite steep, and a good part
of the Haskell code is structured in a rather unusual way
(Fig. 4). These points are not in favor of Haskell.

The computation framework was there from the begin-
ning, initially only for the UI generation step (Fig. 1). We did
not really try alternatives because everything worked well.
The interpretation step was developed later. Based on our
previous experience, we used the computation framework
for this part.

7 Related Work
7.1 Incremental Computations
Incremental computations [20] is the technique of efficiently
updating the result of a computation on change of the inputs.
The dependence graph can be static [6] or dynamic, which
leads to adaptive computations [2]. Acar and coworkers [1]
combine adaptive computations with memoization to arrive
at self-adjusting computations. They present their implemen-
tation as a library for Standard ML, relying on modifiable
references to represent the dependencies between compu-
tations. This allows for fine-grained dependencies. For ex-
ample, self-adjusting algorithms on lists react on deletions
and insertions of individual list elements. Our framework
also maintains a dynamic dependence graph, but this graph

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Stefan Wehr

records dependencies between computations. Hence, our ap-
proach is much more coarse-grained. There exists an OCaml
implementation for self-adjusting computations [14].

7.2 Functional Reactive Programming
(Functional) reactive programming [9, FRP] is closely re-
lated to our approach. FRP offers two major abstractions:
behaviors for continuously time-varying values and events
for streams of discrete state changes. Our approach does not
support behaviors, all state changes are discrete. A survey
of Bainomugisha and colleagues [3] introduces six charac-
teristics of reactive programming: basic abstractions (our
approach: computations), evaluation model (push, but inte-
gration of pull-based sources is possible), support for glitch
avoidance (no, see below), lifting operations (explicit), mul-
tidirectionality (no), distribution (no). Often, FRP serves to
program graphical user interfaces, supporting events such as
key strokes and mouse clicks. Our computation framework
does not have this purpose.
Some implementations of FRP use a pull-based evalua-

tion model, others rely on push. Elliott [8] uses push-pull.
This hybrid approach evaluates continuous behaviors in pull-
style. For discrete events, it uses push to avoid unnecessary
recomputations and to optimize latency.
FrTime [5] is a reactive extension of Racket [21]. It uses

push-based change propagation, supports higher-order be-
haviors/events, and lifts primitive operations automatically
to behaviors/events. In contrast, our computations are first-
order, and the CompM monad acts as type barrier between
computations and pure expression, so explicit lifting is re-
quired. A glitch is an update inconsistency that occurs when
change propagation causes some parts of the program to
see the new values, whereas other parts still see the old
values. FrTime avoids glitches by imposing a topological
ordering on dependencies. With our approach, glitches are
possible because computations might read new values from
data sources before these values propagate at all.
Margara and Salvaneschi [15] examine change propaga-

tion for distributed reactive programming. While our system
as a whole is distributed, the computation framework is not.
Reynders and coworkers [22] combine reactive programming
with multi-tier programming for writing web applications.
Zhao and colleagues [24] present a Haskell implementation
of a push-pull reactive programming model in the domain
of IoT applications. In this domain, update rates can be very
high (10KHz and more). In our hospital domain, updates
rates are significantly lower (less than 5Hz, most of the time
much lower). Reactive values and relations [19] allow pro-
grammers to connect values that change over time, while
retaining control over change propagation. Similar to our
abstractions for data sources and sinks, reactive values may
integrate external entities such as files or GUI widgets.

7.3 Build Systems
Our approach has strong similarities with build systems.
One important differences is that build systems usually store
intermediate and final artifacts on disk, whereas our sys-
tem stores intermediate results in memory (depending on
the caching strategy) and only final artifacts on disk. In the
terminology of Mokhov and coworkers [17, Table 1], our
framework supports dynamic dependencies and the early
cutoff optimization. Further, the scheduler is suspending and
computations using fullCaching are minimal. Our frame-
work works mainly with local data, but some data could also
be stored remotely to be accessed from different instances of
the system. Our system is continuously running, holding the
dynamic dependence graph in memory without persisting
the state on disk.
The build tool Shake [16] has been a source of inspira-

tion in the implementation of our system. For example, we
use a similar approach to encode parameters and results of
computations (keys and values in Shake). Further, our sys-
tem also uses different monads for implementing the body
of a computation (CompM, in Shake Action) and for wiring
computations (CompWireM, in Shake Rule).

7.4 Architectural Patterns
Pipes and filters is an architectural pattern for systems that
process a stream of data [4]. Our system can be viewed as an
instance of this pattern, where computations are the filters
and calls of computations are the pipes. One tries to achieve
loose coupling between filters. In our system, computations
are often quite tightly coupled.
Event-driven architectures [11] use events to connect

loosely coupled, often distributed components. Processing
of events is typically done asynchronously. In contrast, the
computations presented in this article are tightly coupled,
local, and communicate via synchronous calls.

8 Summary
This article presented a push-based architecture that forms
the foundation of a commercial hospital information system.
The system has been used in German hospitals for more than
ten years. The architecture is realized in Haskell, based on a
framework for course-grained self-adjusting computations.
An important topic for future work is support for persistence
of the framework state, so that restarts become much faster.

Data availability
The source code for this article is available open-source [23].

Acknowledgments
This article would not have been possible without all the
hard work from my former colleagues at medilyse GmbH.
Further, I would like to thank the anonymous reviewers of
FUNARCH ’23 for their detailed and helpful comments.

A Software Architecture Based on Coarse-Grained Self-Adjusting Computations FUNARCH ’23, September 8, 2023, Seattle, WA, USA

A Sources and Sinks
The computation framework abstracts over data sources for
inputs and data sinks for outputs. Fig. 5 shows the API.

A.1 Sources
A data source s is an instance of type class CompSrc. The
associated type CompSrcReq s a is the request type of the
source, where a is the result of the request. The computa-
tion framework tracks dependencies between computation
applications and inputs. If the input changes, computation
applications that previously read the input are reevaluated.
The type Dep k v models such a dependency; k is a key iden-
tifying the input and v is its version. The associated types
CompSrcKey and CompSrcVer specify the key and the ver-
sion type of a specific source. Versions do not have to appear
in some increasing order, they just have to be different if the
input changes. A data source has to provide four methods:
• compSrcInstanceId: Identifier of a source instance.
• compSrcExecute: Executes a request and returns a set of
dependencies and the result of the request (the type Fail a
is a strict variant of Either String a). This method is used
when a computation application invokes compSrcReq, see
§ 4. The set of dependencies specify which inputs were
touched. This set is used internally by the framework to
judge when to reevaluate the computation application.

• compSrcWaitChanges: Used by the framework to wait for
changes to the inputs that compSrcExecute previously
returned. The result is a set of dependencies that have
changed.

• compSrcUnregister: Used by the framework to tell the
source that it should no longer monitor the given keys. Af-
ter that, compSrcWaitChanges no longer return changes
for the given keys.
As an example, we consider the FileSrc already men-

tioned in § 5.
data FileSrc = FileSrc

{ src_ident :: CompSrcInstanceId
, src_watch :: FileWatch }

data FileSrcReq a where
ReadFile :: FilePath -> FileSrcReq ByteString
ListDir ::

FilePath -> FileSrcReq (HashSet DirEntry)

instance CompSrc FileSrc where
type CompSrcReq FileSrc = FileSrcReq
type CompSrcKey FileSrc = FilePath
type CompSrcVer FileSrc = Maybe POSIXTime

The request type allows reading files and directories. (Type
DirEntry contains the name and the kind of a directory en-
try.) The dependency key is the canonical path of the file/di-
rectory, the version is the optional modification time (noth-
ing after deletion). The implementation of compSrcExecute
reads the file or directory. Internally, the file source main-
tains a set of paths which it monitors for changes in the

background (the src_watch field). The implementation of
compSrcWaitChanges returns the accumulated changes, and
compSrcUnregister deletes paths from the set.

A.2 Sinks
A data sink s is an instance of type class CompSink. The
associated type CompSinkReq s a is the request type of the
sink, where a is the result of the request. If the request just
produces some outputs, a is the unit type. The computation
framework tracks the set of outputs generated by a compu-
tation application. If the computation application dies (i.e.
the computation is no longer applied to the argument of the
application), the outputs are deleted. The associated type
CompSinkOut s is the output type of the sink. There are four
methods to implement:

• compSinkInstanceId: Identifier of a sink instance.
• compSinkExecute: Executes a request and returns a set of
outputs and the result of the request. This method is used
when a computation application invokes compSinkReq,
see § 4. The set of outputs specifies which outputs have
been generated. It is used internally by the framework to
delete outputs that are no longer generated.

• compSinkDeleteOutputs: Used by the framework to delete
the given outputs.

• compSinkListExistingOutputs: Lists the existing out-
puts. The framework uses this method after a restart to
identify the outputs that became garbage while the pro-
gram was not running.

As an example, we consider FileSink, a sink for writing
files and directories to some base directory.

data FileSink = FileSink
{ fcs_ident :: CompSinkInstanceId
, fcs_root :: FilePath }

data FileSinkReq a where
WriteFile ::

FilePath -> ByteString -> FileSinkReq ()
MakeDirs :: FilePath -> FileSinkReq ()

data FileSinkOut = FileSinkOut FilePath FileOrDir

instance CompSink FileSink where
type CompSinkReq FileSink = FileSinkReq
type CompSinkOut FileSink = FileSinkOut

The request allows writing files and creating directories.
The output type contains the path and a flag specifying
whether it is a file or a directory. The implementation of
compSinkExecute writes the file or creates the directories,
compSinkDeleteOutputs deletes the given files and direc-
tories from disk, and compSinkListExistingOutputs lists
all files and directories starting at the root directory.

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Stefan Wehr

Sources
class (Typeable s, IsCompFlowData (CompSrcKey s), IsCompFlowData (CompSrcVer s)) => CompSrc s where

type CompSrcReq s :: Type -> Type
type CompSrcKey s :: Type
type CompSrcVer s :: Type
compSrcInstanceId :: s -> CompSrcInstanceId
compSrcExecute :: s -> CompSrcReq s a -> IO (CompSrcDeps s, Fail a)
compSrcWaitChanges :: s -> STM (CompSrcDeps s)
compSrcUnregister :: s -> HashSet (CompSrcKey s) -> IO ()

type IsCompFlowData a = (Show a, Eq a, Typeable a, Hashable a)
type CompSrcDep s = Dep (CompSrcKey s) (CompSrcVer s)
type CompSrcDeps s = HashSet (CompSrcDep s)
data Dep k v = Dep { dep_key :: k , dep_ver :: v } deriving (Eq, Ord , Data , Typeable , Generic , Hashable)

Sinks
class (Typeable s, IsCompFlowData (CompSinkOut s)) => CompSink s where

type CompSinkReq s :: Type -> Type
type CompSinkOut s :: Type
compSinkInstanceId :: s -> CompSinkInstanceId
compSinkExecute :: s -> CompSinkReq s a -> IO (CompSinkOuts s, Fail a)
compSinkDeleteOutputs :: s -> CompSinkOuts s -> IO ()
compSinkListExistingOutputs :: s -> Option (IO (CompSinkOuts s))

type CompSinkOuts s = HashSet (CompSinkOut s)

Figure 5. API for sources and sinks

References
[1] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tang-

wongsan. 2006. An experimental analysis of self-adjusting compu-
tation. In Proc. of PLDI 2006. ACM. https://doi.org/10.1145/1133981.
1133993

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2006. Adaptive
functional programming. ACM Trans. Program. Lang. Syst. 28, 6 (2006).
https://doi.org/10.1145/1186632.1186634

[3] Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem,
Stijn Mostinckx, and Wolfgang De Meuter. 2013. A survey on reactive
programming. ACM Comput. Surv. 45, 4 (2013). https://doi.org/10.
1145/2501654.2501666

[4] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. 2007.
Pattern-oriented software architecture, 4th Edition. Wiley. https://www.
worldcat.org/oclc/314792015

[5] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding
Dynamic Dataflow in a Call-by-Value Language. In Proc. of ESOP 2006
(LNCS, Vol. 3924). Springer. https://doi.org/10.1007/11693024_20

[6] Alan Demers, Thomas Reps, and Tim Teitelbaum. 1981. Incremen-
tal Evaluation for Attribute Grammars with Application to Syntax-
Directed Editors. In Proc. of POPL 1981. ACM. https://doi.org/10.1145/
567532.567544

[7] DICOM 2023. DICOM standard. https://www.dicomstandard.org.
[8] Conal Elliott. 2009. Push-pull functional reactive programming. In Proc.

of Haskell Symposium 2009. ACM. https://doi.org/10.1145/1596638.
1596643

[9] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.
In Proc. of ICFP 1997. ACM. https://doi.org/10.1145/258948.258973

[10] Clarence A. Ellis and Simon J. Gibbs. 1989. Concurrency Control in
Groupware Systems. In Proc. of SIGMOD 1989. ACM. https://doi.org/
10.1145/67544.66963

[11] Ludger Fiege, Gero Mühl, and Felix C. Gärtner. 2002. Modular event-
based systems. Knowl. Eng. Rev. 17, 4 (2002). https://doi.org/10.1017/
S0269888903000559

[12] Haskell 2023. The programming language Haskell. https://www.
haskell.org.

[13] HL7 2023. HL7 standards. https://www.hl7.org.
[14] Incremental 2023. Incremental — Library for Incremental Computa-

tions. https://opensource.janestreet.com/incremental.
[15] Alessandro Margara and Guido Salvaneschi. 2018. On the Semantics

of Distributed Reactive Programming: The Cost of Consistency. IEEE
Trans. Software Eng. 44, 7 (2018). https://doi.org/10.1109/TSE.2018.
2833109

[16] Neil Mitchell. 2012. Shake before building: replacing make with haskell.
In Proc. of ICFP 2012. ACM. https://doi.org/10.1145/2364527.2364538

[17] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2020. Build
systems à la carte: Theory and practice. J. Funct. Program. 30 (2020).
https://doi.org/10.1017/S0956796820000088

[18] Michiel Overeem, Marten Spoor, Slinger Jansen, and Sjaak Brinkkem-
per. 2021. An empirical characterization of event sourced systems and
their schema evolution - Lessons from industry. J. Syst. Softw. 178
(2021). https://doi.org/10.1016/j.jss.2021.110970

[19] Ivan Perez and Henrik Nilsson. 2015. Bridging the GUI gap with
reactive values and relations. In Proc. of Haskell Symposium 2015. ACM.
https://doi.org/10.1145/2804302.2804316

[20] WilliamW. Pugh and Tim Teitelbaum. 1989. Incremental Computation
via Function Caching. In Proc. of POPL 1989. ACM. https://doi.org/10.
1145/75277.75305

[21] Racket 2023. Racket, the Programming Language. https://racket-
lang.org.

[22] Bob Reynders, Frank Piessens, and Dominique Devriese. 2020. Gavial:
Programming the web with multi-tier FRP. Art Sci. Eng. Program. 4, 3
(2020). https://doi.org/10.22152/programming-journal.org/2020/4/6

[23] Stefan Wehr. 2023. Software repository for A Software Architec-
ture Based on Coarse-Grained Self-Adjusting Computations. https:
//github.com/skogsbaer/computations and http://doi.org/10.5281/
zenodo.8147256.

[24] Tian Zhao, Adam Berger, and Yonglun Li. 2020. Asynchronous monad
for reactive IoT programming. In Proc. of REBLS 2020. ACM. https:
//doi.org/10.1145/3427763.3428314

Received 2023-06-01; accepted 2023-06-28

https://doi.org/10.1145/1133981.1133993
https://doi.org/10.1145/1133981.1133993
https://doi.org/10.1145/1186632.1186634
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://www.worldcat.org/oclc/314792015
https://www.worldcat.org/oclc/314792015
https://doi.org/10.1007/11693024_20
https://doi.org/10.1145/567532.567544
https://doi.org/10.1145/567532.567544
https://www.dicomstandard.org
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
https://doi.org/10.1017/S0269888903000559
https://doi.org/10.1017/S0269888903000559
https://www.haskell.org
https://www.haskell.org
https://www.hl7.org
https://opensource.janestreet.com/incremental
https://doi.org/10.1109/TSE.2018.2833109
https://doi.org/10.1109/TSE.2018.2833109
https://doi.org/10.1145/2364527.2364538
https://doi.org/10.1017/S0956796820000088
https://doi.org/10.1016/j.jss.2021.110970
https://doi.org/10.1145/2804302.2804316
https://doi.org/10.1145/75277.75305
https://doi.org/10.1145/75277.75305
https://racket-lang.org
https://racket-lang.org
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://github.com/skogsbaer/computations
https://github.com/skogsbaer/computations
http://doi.org/10.5281/zenodo.8147256
http://doi.org/10.5281/zenodo.8147256
https://doi.org/10.1145/3427763.3428314
https://doi.org/10.1145/3427763.3428314

	Abstract
	1 Introduction
	2 Background
	3 System Architecture
	3.1 Import
	3.2 Interpretation
	3.3 UI generation / Workflow / Export
	3.4 Synchronization

	4 API for Computations
	4.1 Accessing Data Sources and Sinks
	4.2 Defining Computations
	4.3 Calling Computation Values
	4.4 Tracking Dependencies
	4.5 Wiring Computation Definitions
	4.6 Caching Computation Results

	5 Computations in Action
	6 Discussion
	6.1 Advantages and Disadvantages
	6.2 Haskell and Alternative Approaches

	7 Related Work
	7.1 Incremental Computations
	7.2 Functional Reactive Programming
	7.3 Build Systems
	7.4 Architectural Patterns

	8 Summary
	Acknowledgments
	A Sources and Sinks
	A.1 Sources
	A.2 Sinks

	References

